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Abstract
A quantum effect is an operator on a complex Hilbert space H that satisfies
0 � A � I . We denote the set of all quantum effects by E(H). In this
paper we prove theorem 4.3, the theory of the sequential product on E(H)

which shows, in fact, that there are sequential products on E(H) which are not
of the generalized Lüders form. This result answers Gudder’s open problem
negatively.

PACS numbers: 02.10−v, 02.30.Tb, 03.65.Ta.

1. Introduction

If a quantum-mechanical system S is represented in the usual way by a complex Hilbert space
H, then a self-adjoint operator A on H such that 0 � A � I is called the quantum effect on
H [1, 2]. Quantum effects represent yes–no measurements that may be unsharp. A set of
quantum effects on H is denoted by E(H). The subset P(H) of E(H) consisting of orthogonal
projections represents sharp yes–no measurements. Let T (H) be a set of trace class operators
on H andS(H) a set of density operators, i.e. the trace class positive operators on H of unit trace,
which represent the states of a quantum system. An operation is a positive linear mapping
� : T (H) → T (H) such that for each T ∈ S(H), 0 � tr[�(T )] � 1 [3–5]. Each operation
� can define a unique quantum effect B such that for each T ∈ T (H), tr[�(T )] = tr[TB].

LetB(H) be a set of bounded linear operators on H; the dual mapping �∗ : B(H) → B(H)

of an operation � is defined by the relation tr [T �∗(A)] = tr[�(T )A], A ∈ B(H), T ∈ T (H)

[4]. The effect B defined by operation � satisfies that B = �∗(I ) [5].
For each P ∈ P(H) a so-called Lüders operation �P

L : T → PTP is associated, its dual is(
�P

L

)∗
(A) = PAP and the corresponding quantum effect is

(
�P

L

)∗
(I ) = P . These operations

arise in the context of ideal measurements. Moreover, each quantum effect B ∈ E(H) gives
rise to a general Lüders operation �B

L : T → B
1
2 T B

1
2 and B is recovered as

(
�B

L

)∗
(I ) = B [5].
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Let �1,�2 be two operations. The composition �2 ◦ �1 is a new operation, called
a sequential operation as it is obtained by first performing �1 and then �2. In general,
�2 ◦ �1 �= �1 ◦ �2. Note that for any two quantum effects B,C ∈ E(H), we have(
�C

L ◦ �B
L

)∗
(I ) = B

1
2 CB

1
2 [5, pp 26–27]. It shows that the new quantum effect B

1
2 CB

1
2

yielded by B and C has an important physical meaning. Professor Gudder called it the
sequential product of B and C, and denoted it by B ◦ C. It represents the quantum effect
produced by fist measuring A and then measuring B [6–8]. This sequential product has also
been generalized to an algebraic structure called a sequential effect algebra [7].

Now, we introduce the abstract sequential product on E(H) as follows.
Let ◦ be a binary operation on E(H), i.e. ◦: E(H) × E(H) → E(H), if it satisfies the

following.

(S1) The map B → A ◦ B is additive for each A ∈ E(H), that is, if B + C � I , then
(A ◦ B) + (A ◦ C) � I and (A ◦ B) + (A ◦ C) = A ◦ (B + C).

(S2) I ◦ A = A for all A ∈ E(H).
(S3) If A ◦ B = 0, then A ◦ B = B ◦ A.
(S4) If A ◦ B = B ◦ A, then A ◦ (I − B) = (I − B) ◦ A and A ◦ (B ◦ C) = (A ◦ B) ◦ C for

all C ∈ E(H).
(S5) If C ◦ A = A ◦ C,C ◦ B = B ◦ C, then C ◦ (A ◦ B) = (A ◦ B) ◦ C and C ◦ (A + B) =

(A + B) ◦ C whenever A + B � I .

If E(H) has a binary operation ◦ satisfying conditions (S1)–(S5), then (E(H), 0, I, ◦) is called
a sequential operator effect algebra. Professor Gudder showed that for any two quantum
effects B and C, the operation ◦ defined by B ◦ C = B

1
2 CB

1
2 satisfies conditions (S1)–(S5),

and so is a sequential product of E(H), which we call the generalized Lüders form. In 2005,
Professor Gudder presented 25 open problems about the general sequential effect algebras.
The second problem is as follows.

Problem 1.1. [9] Is B ◦ C = B
1
2 CB

1
2 the only sequential product on E(H)?

As we see, the five properties are based on the measurement logics and the uniqueness property
has been asked many times in Gudder’s paper. In this paper, we construct a new sequential
product on E(H) which differs from the generalized Lüders form; thus, we answer the open
problem negatively.

2. The sequential product on E(H)

In this section, we study some abstract properties of the sequential product ◦ on E(H). For
convenience, we introduce the following notations: if A,B ∈ E(H), we say that A ⊕ B is
defined if and only if A + B � I and define A ⊕ B = A + B; if A ◦ B = B ◦ A, we denote
A|B.

Lemma 2.1. If A,B ∈ E(H), a ∈ [0, 1], then

A ◦ (aB) = a(A ◦ B).

Proof. It is clear that for a = 1, the conclusion is true. If a > 0 is a rational number,
i.e. a = m

n
, where n,m are positive integers, it follows from

⊕n
i=1

(
A ◦ 1

n
B

) = A ◦ B that
A ◦ (

1
n
B

) = 1
n
(A ◦ B); thus, A ◦ (

m
n
B

) = ⊕m
i=1 A ◦ (

1
n
B

) = m
n
(A ◦ B). If a ∈ [0, 1]

is not a rational number, then for each q = m
n

> a, we have q(A ◦ B) = A ◦ (qB) =
A ◦ [(q − a)B] + A ◦ (aB) � A ◦ (aB), so q(A ◦ B) � A ◦ (aB). Let q → a; we have
a(A ◦ B) � A ◦ (aB). Similarly, we can get that A ◦ (aB) � a(A ◦ B) by taking q = m

n
< a.
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So A ◦ (aB) = a(A ◦ B). Moreover, it follows from the proof process that for a = 0 the
conclusion is also true. �

Lemma 2.2. [9, theorem 3.4(i)] Let A ∈ E(H) and E ∈ P(H). If A � E, then A|E
and E ◦ A = A.

Lemma 2.3. If a ∈ [0, 1], E ∈ P(H), then aI |E and (aI) ◦ E = E ◦ (aI) = aE.

Proof. Since aE � E, and aE|E and E ◦ E = E by lemma 2.2, it follows from
E = E ◦ I = (E ◦ E) ⊕ (E ◦ (I − E)) = E ⊕ (E ◦ (I − E)) that E ◦ (I − E) = 0.
Note that E ◦ (a(I − E)) � E ◦ (I − E) = 0, so E ◦ (a(I − E)) = 0; thus, it follows from
(S3) that E|a(I − E). Moreover, by (S5) we have E|a(I − E) ⊕ aE = aI , so it follows from
lemmas 2.1 and 2.2 that (aI) ◦ E = E ◦ (aI) = a(E ◦ I ) = aE. �

Lemma 2.4. If E,F ∈ P(H),E � F and 0 � a � 1, then E|aF and E ◦ (aF ) = aE.

Proof. It follows from E � F that I − E � I − F � a(I − F). By lemmas 2.2 and 2.3, we
have I − E|a(I − F) and I − E|(1 − a)I ; thus, I − E|a(I − F) ⊕ (1 − a)I = I − aF . It
follows from (S4) that E|I − aF and again by (S4) that E|aF ; moreover, by lemmas 2.1 and
2.2, we have (aF ) ◦ E = E ◦ (aF ) = a(E ◦ F) = aE. �

Lemma 2.5. If E ∈ P(H),A ∈ E(H), 0 � a � 1 and A � E, then aE|A and
(aE) ◦ A = A ◦ (aE) = aA.

Proof. It follows from lemma 2.2 that A|E, so by (S4) we have A|I − E. Since
A ◦ E = A = A ◦ I = A ◦ E ⊕ A ◦ (I − E), we have A ◦ (I − E) = 0. Note that
A ◦ (a(I − E)) � A ◦ (I − E); we have A ◦ (a(I − E)) = 0, so A|a(I − E).

Let {Eλ} be the identity resolution of A and denote

An =
2n−1∑
i=0

i

2n

(
Ei+1

2n
− E i

2n

)
,

Bn =
2n∑

i=1

i

2n

(
E i

2n
− Ei−1

2n

)
.

Note that A ∈ ε(H), so Eλ = 0 when λ < 0 and Eλ = I when 1 � λ. Moreover, for each
n ∈ N, An � An+1, Bn+1 � Bn, and when n → ∞, ‖An − A‖ → 0, ‖Bn − A‖ → 0 [10].

Let 0 � b � 1. Then it follows from lemmas 2.1 and 2.3 that

(bI) ◦ An =
2n−1∑
i=1

(bI) ◦
(

i

2n

) (
Ei+1

2n
− E i

2n

)

=
2n−1∑
i=1

(
ib

2n

) (
Ei+1

2n
− E i

2n

) = bAn

and

(bI) ◦ Bn = bBn.

Note that A � An, so (bI)◦A � (bI)◦An = bAn. Let n → ∞. Then (bI)◦A � bA. Doing
the same with {Bn}, we get (bI) ◦ A � bA, so (bI) ◦ A = bA = A ◦ (bI). That is, A|bI for
each 0 � b � 1; in particular, A|(1 − a)I . Thus, it follows from A|(1 − a)I + a(I − E) that
A|I − aE; by (S4), we have A|aE. Hence, (aE) ◦ A = A ◦ (aE) = a(A ◦ E) = aA. �

3
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Lemma 2.6. Let 0 � a � 1 and A,B ∈ E(H). Then

(aA) ◦ B = A ◦ (aB) = a(A ◦ B).

Proof. It follows from lemma 2.5 that (aA) ◦ B = (A ◦ (aI)) ◦ B = A ◦ ((aI) ◦ B) =
A ◦ (aB) = a(A ◦ B). �

Lemma 2.6 showed that we can write a(A ◦ B) for (aA) ◦ B and A ◦ (aB).
In order to obtain our main result in this section, we need to extent ◦ : E(H) × E(H) →

E(H) to E(H) × S(H) → S(H), where S(H) is the set of bounded linear self-adjoint
operators on H.

Let B ∈ E(H),A ∈ S+(H). Then there exists a number M > 0 such that A
M

∈ E(H).

Now we define

B ◦ A = M

(
B ◦ A

M

)
.

If there is another positive number M ′ such that A
M ′ ∈ E(H), without losing generality, we

assume that M � M ′; then M ′(B ◦ A
M ′

) = M ′(B ◦ (
M
M ′

A
M

)) = M ′( M
M ′

(
B ◦ A

M

)) = M
(
B ◦ A

M

)
.

This showed that B ◦ A is well defined for each bounded linear positive operator A on H.
In general, if A ∈ S(H), we can express A as A1 − A2, where A1, A2 are two bounded

linear positive operators on H [10]. Now we define

B ◦ A = B ◦ A1 − B ◦ A2.

If A′
1 −A′

2 is another expression of A with the above properties, then A1 + A′
2 = A′

1 + A2 = K

is a bounded linear positive operator on H. If we take a positive real number M such that
K
M

∈ E(H), then B ◦ (A1 + A′
2) = M

(
B ◦ (

A1
M

+ A′
2

M

)) = M
(
B ◦ A1

M

)
+ M

(
B ◦ A′

2
M

) =
B ◦ A1 + B ◦ A′

2. Similarly, B ◦ (A′
1 + A2) = B ◦ A′

1 + B ◦ A2. Thus, it follows from
B ◦ A′

1 + B ◦ A2 = B ◦ A1 + B ◦ A′
2, B ◦ A1 − B ◦ A2 = B ◦ A′

1 − B ◦ A′
2. This showed that

◦ is well defined on E(H) × S(H).
From the above discussion, we can easily prove the following important result.

Theorem 2.7. If B ∈ E(H),A1, A2 ∈ S(H) and a ∈ R, then we have

B ◦ (A1 + A2) = B ◦ A1 + B ◦ A2, B ◦ (aA1) = a(B ◦ A1).

3. Sequential product on E(H) with dim (H) = 2

In this section, we suppose that dim(H) = 2. Now, we explore the key idea of constructing
our sequential product.

Lemma 3.1. If E ∈ P(H), B ∈ E(H), then E ◦ B = EBE.

Proof. Since E is a orthogonal projection on E(H) with dim(H) = 2, there exists a normal
basis {e1, e2} of H such that E(ei) = λiei , where λi ∈ {0, 1}, i = 1, 2. If λi = 0, i = 1, 2,
then E = 0; if λi = 1, i = 1, 2, then E = I . It is clear that for E = 0 or E = I , the
conclusion is true. Without losing generality, we now suppose that λ1 = 1 and λ2 = 0, i.e.

(E(e1), E(e2)) = (e1, e2)
(

1 0
0 0

)
. Let B ∈ S(H). Then we have (B(e1), B(e2)) = (e1, e2)

(
x y

ȳ z

)
,

where x, z ∈ R ([10]). Now we define two linear operators X and Z on H which satisfy that

(X(e1),X(e2)) = (e1, e2)

(
x 0
0 0

)

4
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and

(Z(e1), Z(e2)) = (e1, e2)

(
0 0
0 z

)
.

Then X = xE,Z = z(I −E) ∈ E(H) and it follows from (S1) and lemma 2.2 that E ◦X = X

and E ◦ Z = 0. Denote

(E ◦ B(e1), E ◦ B(e2)) = (e1, e2)

(
f (x, y, z) g(x.y.z)

g(x.y.z) h(x, y, z)

)
.

Since S(H) is a real linear space and, by theorem 2.7, that B → E ◦ B is a real linear
map of S(H) → S(H), f, g and h are real linear maps of vector (x, y, z) and f and g are
real-valued functions of (x, y, z); thus, function f (x, y, z) must have the following form
[10]: f (x, y, z) = kx + lz + n(y + ȳ) + im(y − ȳ), where k, l,m, n ∈ R. Let B = X and
B = Z, respectively. It follows from E ◦ X = X and E ◦ Z = 0 that l = 0, k = 1, so
f (x, y, z) = x +n(y + ȳ)+mi(y − ȳ). Note that when B ∈ S+(H),E ◦B should be a positive
operator; hence, when x, z � 0 and xz − |y|2 � 0, we have f (x, y, z) � 0. Take y ∈ R; then
f (x, y, z) = x+2ny. Thus, when x, z � 0, y ∈ R and xz−y2 � 0, f (x, y, z) = x+2ny � 0.
If n �= 0, take y = − 1

n
, x = 1, z = 1

n2 ; then we have f < 0. This is a contradiction and so
n = 0. Similarly, if m �= 0, take y = − i

m
, x = 1, z = 1

m2 ; we will get f < 0. This is also a
contradiction and so m = 0. Thus, we have f (x, y, z) = x.

Moreover, note that E◦((I−E)◦B) = (E◦(I−E))◦B = 0◦B = 0 = ((I−E)◦E))◦B =
(I −E)◦(E◦B), as above; we may prove that ((I −E)◦(E◦B)(e1), (I −E)◦(E◦B)(e2)) =
(e1, e2)

(
0 0
0 h(x,y,z)

) = (e1, e2)
(

0 0
0 0

)
. Thus, h(x, y, z) = 0. For each y ∈ C, take x = 1, z = |y|2;

then B is a positive operator and so E ◦ B is also a positive operator. Thus, we have
f h − |g|2 � 0. It follows from h = 0 that g = 0, so E ◦ B = X = EBE. �

Corollary 3.2. Let E ∈ P(H), a ∈ [0, 1] and A = aE. Then for each B ∈ E(H),

A ◦ B = (aE) ◦ B = a(E ◦ B) = a(EBE) = a
1
2 EBa

1
2 E = A

1
2 BA

1
2 .

Now, we prove the following important result.

Theorem 3.3. Let H be a complex Hilbert space with dim(H) = 2, A,B ∈ E(H). If

{e1, e2} is a normal basis of H such that (A(e1), A(e2)) = (e1, e2)
(
a2 0
0 b2

)
and (B(e1), B(e2)) =

(e1, e2)
(
x y

ȳ z

)
, then there exists a θ ∈ R such that

(A ◦ B(e1), A ◦ B(e2)) = (e1, e2)

(
a2x ab eiθy

ab e−iθ ȳ b2z

)
.

Proof. Let {e1, e2} be a normal basis of H such that (A(e1), A(e2)) = (e1, e2)
(
a2 0
0 b2

)
and

(B(e1), B(e2)) = (e1, e2)
(
x y

ȳ z

)
, where 0 � a, b � 1, 0 � x, 0 � z, 0 � xz − |y|2.

Now we define a linear operator E on H such that (E(e1), E(e2)) = (e1, e2)
(

1 0
0 0

)
; then

E ∈ P(H). By corollary 3.2, we can suppose that a, b ∈ (0, 1] and a �= b. Thus,

A = a2E + b2(I − E). Denote (A ◦ B(e1), A ◦ B(e2)) = (e1, e2)
(
f (x,y,z) g(x,y,z)

g(x,y,z) h(x,y,z)

)
, where

f, g, h are real linear functions with respect to (x, y, z) ∈ R × C × R and f, h take values in
R. Since E ◦ (A ◦ B) = (E ◦ A) ◦ B) = (E ◦ (a2E + b2(I − E))) ◦ B = a2(E ◦ B), we have

5
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f (x, y, z) = a2x. Similarly, we also have h(x, y, z) = b2z. Moreover, since E|E,E|(I −E),
by (S5), we have E|A and, by (S4), we have (I −E)|A; thus, A◦(xE) = xa2E,A◦z(I −E) =
zb2(I − E). This shows that g is independent of x and z, so g(x, y, z) = αy, where α ∈ C.
On the other hand, if B ∈ S(H) is a positive operator, then A ◦ B is also a positive operator,
so for each positive number x and z, and each complex number y, when xz − |y|2 � 0, we
have a2b2xz − |αy|2 � 0. Let x = 1, z = |y|2. Then we get that

a2b2 − |α|2 � 0. (1)

Let B,C be two positive operators. We show that if both B � C and C � B are not true,
then both A◦B � A◦C and A◦C � A◦B are also not true. In fact, let D = b2E +a2(I −E).
Then A|b2E + a2(I − E) = D and A ◦ D = A ◦ (b2E + a2(I − E)) = a2b2I . So if A ◦ B �
A ◦ C, then D ◦ (A ◦ B) � D ◦ (A ◦ C). But D ◦ (A ◦ B) = (D ◦ A) ◦ B = a2b2I ◦ B =
a2b2B � D ◦ (A ◦ C) = a2b2C; thus, we will have B � C. This is a contradiction. So
A ◦ B � A ◦ C is not true. Similarly, we have that A ◦ C � A ◦ B is also not true.

Let y ∈ C, y �= 0, ε be a positive number satisfying that a2|y| − ε > 0. If we define

(B(e1), B(e2)) = (e1, e2)
(|y| y

ȳ |y|
)

and (C(e1, C(e2)) = (e1, e2)
(
ε 0
0 0

)
, then B,C ∈ E(H), and

B � C and C � B are both not true. Thus, we have that both A◦B � A◦C and A◦B � A◦C

are also not true, i.e. the self-adjoint operator A◦B −A◦C is not a positive operator. Note that

((A◦B−A◦C)(e1), (A◦B−A◦C)(e2)) = (e1, e2)
(
a2|y|−ε αy

αy b2|y|
)
, and a2|y|−ε > 0, b2|y| > 0,

so we have b2(a2|y| − ε)|y| − |αy|2 < 0. Let ε → 0; we get that |αy|2 � b2a2|y|2. Thus, we
have

|α|2 � b2a2. (2)

It follows from (1) and (2) that |α|2 = a2b2. So |α| = ab and α = abeiθ . �

4. A new sequential product on E(H)

Theorem 3.2 motivated us to construct a new sequential product on E(H). First, we need the
following.

For each A ∈ E(H), denote R(A) = {Ax, x ∈ H }, N(A) = {x, x ∈ H,Ax = 0},
and let P0 and P1 be the orthogonal projections on R(A) and N(A), respectively. It follows
from A ∈ E(H) that N(A) = N(A1/2), so R(A) = R(A1/2). Moreover, P0(H)⊥P1(H) and
H = P0(H) ⊕ P1(H) [10].

Denote by fz(u) the complex-valued Borel function defined on [0, 1], where fz(u) =
exp z(ln u) if u ∈ (0, 1] and fz(0) = 0. Now, we define

Ai = fi(A), A−i = f−i (A).

It is easy to show that ‖Ai‖ � 1, ‖A−i‖ � 1 and

(Ai)∗ = A−i , AiA−i = A−iAi = P0.

Theorem 4.1. Let H be a complex Hilbert space and A,B ∈ E(H). If we define
A ◦ B = A1/2AiBA−iA1/2, then ◦ satisfies conditions (S1)–(S3).

Proof. If A,B ∈ E(H), note that ‖Ai‖ � 1 and ‖A−i‖ � 1; we have

‖A ◦ B‖ = ‖A1/2AiBA−iA1/2‖ � ‖A1/2‖‖Ai‖‖B‖‖A−i‖‖A1/2‖ � 1

and

< A1/2AiBA−iA1/2x, x >= ‖B1/2A−iA1/2x‖ � 0

6
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for all x ∈ H , so A ◦ B = A1/2AiBA−iA1/2 is a binary operation on E(H). Moreover, it is
clear that the map B → A ◦B is additive for each A ∈ E(H), so the operation ◦ satisfies (S1).

It follows from I ◦ A = I 1/2I iAI−iI 1/2 = A that ◦ satisfies (S2).
If A ◦ B = A1/2AiBA−iA1/2 = 0 and we represent A and B on H = P0(H) ⊕ P1(H) by(

A1 0
0 0

)
and

(
B1 B2
B3 B4

)
, respectively, then

A ◦ B =
(

A
1/2
1 Ai

1B1A
−i
1 A

1/2
1 0

0 0

)
= 0,

so we have A
1/2
1 Ai

1B1A
−i
1 A

1/2
1 = 0 on P0(H), i.e.

(
A

1/2
1 Ai

1B1A
−i
1 A

1/2
1 x, x

) = 0 for each
x ∈ P0(H). Note that R(A) = R(A1/2) and Ai is a unitary operator on P0(H), so R(A1/2)

is dense in P0(H); thus for each y ∈ P0(H), there is a sequence {zn} ⊆ R(A1/2) such that
zn → Aiy, so there is a sequence {xn} ⊆ H such that A1/2xn = zn → Aiy. Let xn = yn + un,
where yn ∈ P0(H), un ∈ P1(H). Then A1/2xn = A1/2yn. Thus, there is a sequence {yn} in
P0(H) such that A1/2yn = zn → Aiy. Note that Ai is a unitary operator on P0(H), so we
have A−iA1/2yn → y. But∥∥B

1/2
1 A−i

1 A
1/2
1 yn

∥∥ = (
A

1/2
1 Ai

1B1A
−i
1 A

1/2
1 yn, yn

) = 0,

so B
1/2
1 y = 0 for each y ∈ P0(H), that is, B

1/2
1 = 0. Since B ∈ E(H), B2 = 0, B3 = 0; thus,

we have B = (0 0
0 B4

)
, so B ◦ A = B1/2BiAB−iB1/2 = 0 = A ◦ B. This showed that ◦ satisfies

(S3). �

Theorem 4.2. Let H be a complex Hilbert space with dim (H) < ∞, A,B ∈ E(H). If
we define A ◦ B = A1/2AiBA−iA1/2, then A ◦ B = A1/2AiBA−iA1/2 = B ◦ A = B1/2Bi

AB−iB1/2 if and only if AB = BA.

Proof. First, it is obvious that if AB = BA, then A ◦ B = A1/2AiBA−iA1/2 = B ◦ A =
B1/2BiAB−iB1/2. Now, if A ◦ B = A1/2AiBA−iA1/2 = B ◦ A = B1/2BiAB−iB1/2,
we show that AB = BA. Note that A ∈ E(H) and dim (H) < ∞, so A has the
form

∑n
i=1 aiEi , where

∑n
k=1 Ek = I, ak � 0, Ek ∈ P(H), ak �= al, EkEl = 0 for all

k, l = 1, 2, . . . , n, k �= l. Without losing generality, we suppose that 0 � a1 < · · · < an;
then 0 � |a1/2

1 fi(a1)| < · · · < |a1/2
n fi(an)| since a

1/2
k = |a1/2

k fi(ak)|. It follows from the
operator theory that A1/2 = ∑n

k=1 a
1/2
k Ek and fi(A) = Ai = ∑n

k=1 fi(ak)Ek, f−i (A) =
A−i = ∑n

k=1 f−i (ak)Ek [10]. Note that A1/2AiBA−iA1/2 = B1/2BiAB−iB1/2, so for each
x ∈ H, (A1/2AiBA−iA1/2x, x) = (B1/2BiAB−iB1/2x, x); thus, we have

‖B1/2A−iA1/2x‖ = ‖A1/2B−iB1/2x‖. (3)

Take x ∈ En(H); then A1/2A−ix = A−iA1/2x = a
1/2
n f−i (an)x. Note that |anf−i (an)| =

|anfi(an)| = |an|, R(B) = R(B1/2) and B−i is a unitary operator on R(B) and B−iB1/2 =
B1/2B−i ; we have

‖A1/2B1/2B−ix‖2 =
∥∥∥∥∥

n∑
k=1

a
1/2
k EkB

1/2B−ix

∥∥∥∥∥
2

=
n∑

k=1

ak‖EkB
1/2B−ix‖2 �

n∑
k=1

an‖EkB
1/2B−ix‖2

= an‖B1/2B−ix‖2 = ∥∥a1/2
n B−iB1/2x

∥∥2

= ∥∥a1/2
n B1/2x

∥∥2 = ‖B1/2A1/2A−ix‖2.

7
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Thus, it follows from equation (3), B−iB1/2 = B1/2B−i , A−iA1/2 = A1/2A−i and 0 �
a1 < · · · < an, that for each k < n, we have EkB

1/2B−ix = 0, so B1/2B−ix ∈ En(H).
Thus, we have EnB

1/2B−iEn = B1/2−iEn. This showed that B1/2B−i has the matrix

form
(
C D

0 K

)
on H = En(H) ⊕ (I − En)(H), where C ∈ B(En(H),En(H)),D ∈

B((I − En)(H),En(H)),K ∈ B((I − En)(H), (I − En)(H)). Note that B ∈ E(H), B

has the form
∑m

k=1 bkFk and B1/2B−i = ∑m
k=1 b1/2f−i (bk)Fk , where

∑m
k=1 Fk = I, bk �

0, Fk ∈ P(H), bk �= bl, FkFl = 0 for all k, l = 1, 2, . . . , m, k �= l. Now we define a
polynomial

Gk(z) =
∏
j �=k

(
z − b

1/2
j f−i (bj )

)/ ∏
j �=k

(
b

1/2
k f−i (bj ) − b

1/2
j f−i (bj )

)
on C. It is easy to show that for each 1 � k � m,Gk(B

1/2B−i ) = Fk . Note that B1/2B−i

has an up-triangulate form, so Gk(B
1/2B−i ) has also an up-triangulate form. But Fk is a self-

adjoint operator, so Fk has a diagonal matrix form on En(H) ⊕ (I − En)(H). This implies
that Fk commutes with En for each k, so B commutes with En. Denote A0 = A − anEn; we
then still have A0 ◦B = B ◦A0 as discussed before. Thus, we get that B commutes with En−1.
Continuously, we will have that B commutes with all Ek and so with A. In this case, we have
A ◦ B = AB. �

Our main result is as follows.

Theorem 4.3. Let H be a complex Hilbert space with dim(H) < ∞ and A,B ∈ E(H). If we
define A ◦ B = A1/2AiBA−iA1/2, then ◦ is a sequential product on E(H).

Proof. By theorem 4.1, we only need to prove that ◦ satisfies (S4) and (S5). In fact, if A|B,
i.e. A ◦ B = A1/2AiBA−iA1/2 = B ◦ A = B1/2BiAB−iB1/2, then it follows from theorem
4.2 that A commutes with B and of course I − B, so A|I − B. If C ∈ E(H), we have

A ◦ (B ◦ C) = A
1
2 AiB

1
2 BiCB−iB

1
2 A−iA

1
2

= A
1
2 B

1
2 AiBiCA−iB−iA

1
2 B

1
2

= (AB)
1
2 (AB)iC(AB)−i (AB)

1
2

= (AB) ◦ C = (A ◦ B) ◦ C.

So (S4) is satisfied. �

Moreover, if C|B and C|A, then C(AB) = ACB = (AB)C,C(A ⊕ B) = (B + A)C, so it
is easy to prove that C(A ◦ B) = (A ◦ B)C; thus, by theorem 4.2, we have C|A ◦ B and
C|(A ⊕ B) whenever A ⊕ B is defined. This showed that (S5) hold.

By using theorem 4.3, we can prove the following corollary.

Corollary 4.4. Let H be a complex Hilbert space with dim(H) = 2, A,B ∈ E(H). Take

a normal basis {e1, e2} of H such that (A(e1), A(e2)) = (e1, e2)
(
a2 0
0 b2

)
and (B(e1), B(e2)) =

(e1, e2)
(
x y

ȳ z

)
. When a, b > 0, define

((A ◦ B)(e1), (A ◦ B)(e2)) = (e1, e2)

(
a2x ab eiθy

ab e−iθ ȳ b2z

)
,

where θ = ln a2 − ln b2; when a > 0, b = 0, define

((A ◦ B)(e1), (A ◦ B)(e2)) = (e1, e2)

(
a2x 0

0 0

)
;

8
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when a = 0, b > 0, define

((A ◦ B)(e1), (A ◦ B)(e2)) = (e1, e2)

(
0 0
0 b2z

)
;

thus, ◦ is a sequential product of E(H).

Remark 1. In conclusion, we construct a new sequential product A ◦ B = A
1
2 AiBA−iA

1
2

on ε(H) with dim (H) < ∞, which is different from the generalized Lüders form A
1
2 BA

1
2 .

In this proof, we can also get a more general one A ◦ B = A
1
2 AtiBA−t iA

1
2 for t ∈ R. It

indicates that with the measurement rule (S1)–(S5), there can be a time parameter t to describe
the phase change. In particular, if dim(H) = 2, A ∈ E(H) and {e1, e2} is a normal basis of H

such that (A(e1), A(e2)) = (e1, e2)
(
a2 0
0 b2

)
, then when a > 0, b > 0 and a �= b, corollary 4.4

shows that θ = (ln a2 − ln b2)t can be used to describe the phase-changed phenomena of the
quantum effect A ◦ B. As the proof shows, it is the only form that the sequential product can
be of. This is much more important in physics.

Remark 2. As we know, in the quantum computation and quantum information theory,
if (Ai)i∈N is a sequence of bounded linear operators on H satisfying

∑n
i=1 AiA

∗
i = I ,

then the operators Ai, i ∈ N, are called the operational elements of the quantum operation
U : T (H) → T (H) defined by

U(ρ) =
n∑
n

AiρA∗
i ,

where T (H) is the set of trace class operators. Any trace preserving, normal, completely
positive map has the above form. This is very important in describing dynamics, measurements,
quantum channels, quantum interactions, quantum error, correcting codes, etc [12]. If
(Ai)i∈N is a set of quantum effects with

∑n
i=1 Ai = I , then the transformation U ′(ρ) =∑n

j=1 A
1
2
j Ati

j ρA−t i
j A

1
2
j is a well-defined quantum operation since

∑n
j=1 A

1
2
j Ati

j A−t i
j A

1
2
j =∑n

i=1 Ai = I . So this new sequential product yields a natural and interesting quantum
operation.

Remark 3. Theorem 4.3 indicates that conditions (S1)–(S5) of the sequential product of
E(H) are not sufficient to characterize the generalized Lüders form A

1
2 BA

1
2 of A and B.

Recently, Professor Gudder presented a characterization of the sequential product of E(H) is
the generalized Lüders form [11].
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